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VICINITY OP SHALLOW SEA BOUNDARIES
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ABSTRACT

Active sonar classification of submerged elastic structures becomes
increasingly difficuiv when the structure is close to the bottom or
surface of the sea. The backscattering cross-section (BSCS) of any
target, which is relatively simpler to determine in deep waters, away
from boundaries, becomes substantially distorted as the structure
approaches either one of these environmental boundaries. Near these
interfaces the classification methodology bzsed on echo resonances that
we have used in the past (viz., Appl. Mechanics Reviews 43, 171-208,
(1990)) can no longer be used. By means of the examples of & spherical.
shell and an elastic solid sphere insonified by plane waves, we study
the above mentioned degradation in BSCS in order to assess how distant
the structure should be from these boundaries before the resonance
features become discernible again in the echoes, and object recognition
is again possible. Our approach is based on the method of images for
the construction of the appropriate Green's functions, combined with a
very involved two-body scattering formulation that determines the
combined T-Matrix of two insonified objects, when the T-Matrix of each
individual objiect is known. The methcd is extended to the time domain.
We present form-functions in the frequency domain, as well as late-time
responses in the time domain for both sphere and shell as they approach
the mentioned boundaries. Boundary effects seem to be confined tec a
"ckin layer® bounded by R<4. Within this layer the resonance features
fade and are washed out in both the frequency and time domains. The
formulation uses translation operators borrowed from atomic phys.cs.

I. THEORETICAL APPROACH

The scattering of a plane c.w. scalar wavefield V() by an object
of surface S in an unbounded acoustic medium can be described by means
of the T-Matrix method.‘" A brief review follows. The total wavefield
is always the sum of the incident ¥/ (Y) and the scattered ¥*(1),
Huygens principle states that®:

¥4 [[1e V-2 - Ve glle - 7)) .8 = (VD ()
S
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N 7- never I is outside S (top formula) or r is inside S (Bbottom). The
gizensional Green's function for an unbsunded space ist

mg-:":) = explik|F-7'{) /ax|7-£), 2)

1ch can be expanded in a complete set of solutions of Helmholtz
Bevation (V+k?)$(F)=0,, which are, in normalized form:

.- . T -
s 2 Wy 1 = [ S ne) [0 PR (00} o

Where €, (2 I’nn;o’r(z 8,$), and e, o correspond tc even or odd indices.®

Sl The iesired expansion is:

(4)
qIF-F) = 1k L8 (kE) Re W, (kE) =
e ii ALk (kr>)aﬂ,(&r’)£ (U'@.E”‘@ose‘ ‘i‘::::i ’—:::;:
= €Em m-m)!
Amn v (2ﬂ+i)%z;;£—! (5)

We note that Rey,(f) are like the ¥ ,(f), but with the h " (kr) replaced
by their regular parts, j. (kr). [m=0 1,2,...n} The T-Matrix approacht?
Gi-es the coefficients of the scattered field in terms of those of the
_I_r zident, when both are expanded in terms of the above solutions in
fzuation (3}. The scattered field admits the expansion:

SR

V(D) =Y £y, (D, (6)
I

and the incident field, analogously, the expansion:

ViD= Y a, Rey (5. N
n

The elements T, Oof the T-matrix are found from

= };I‘M.a,,,. (8)
n

It has been shown‘"®? that these elements are given by

T=« (ReD)p? 9
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where the elements of the auxiliary matrix Q are given by

Qe = ~ & {{ 48" T (™) Re W ()
\ .

(10)

whenever the Neumann B.C. is satisfied on S i.e., A.WW =0, or given by
0 =, - (11)
QM' = k Sgsd's * [v Re -@%‘(Fl)]wn (r‘)

whenever the Dirichlet B.C. is satisfied on §, i.e., ¥(f)=0. If the
object has spherical shape, the integrai in Equatiens (10) and (11) can
be performed exactly, in closed form, and the T-Matrix elements in
Equation (9) can be analytically determined. For other shapes, the
integrations over S must be carried out numerically and the T-Matrix

elements ace then npumerjcally determined. Once the scattered field is
determined, the cross section is:

EB_ 4(&\ =l-2- 2——(‘ _Qﬁ_l}?’z {12)

in normalized form. all the above is for a single scatterer. If there
are two scatterers of surfaces S, and S, in the medium, then the analysis

becomes more complicated since it reguires two shifts of origins.

These
origin shifts, so common in

olid state physics, are an immediate clue:
that one is eventuall'g' going §o deal with addition theorems for (vector)
spherical harmorics,® and the machinery originally developed in atomic
physics to handle the coupling of two angular momenta vectors® ™ (i.e.,
Clebsch-Gordan coefficients and/or Wigner 3-j symbols). Equation (1)
still holds, but the integration is now over S, + S,, and its upper
result is for f outside S, and S,, while the lower one is for f inside
§, or S,. Let 0 be an origin outside both scatterers, and let 0,, 0, be
origins inside S, and S,, respectively. The incident field can still be
expanded by Equation (7), where 7 is now the radius vector from O,

provided that ¢ contains no sources inside a sphere centered at 0 and
containing both S, and S,. Expansions of ¢¢ and of g{k|f-f’|) are also
required abcut both o, and 0,. Let &,,4, be position vectors of 0,, 0,

relative to 0. Let I,,f;" (or f,,i,") be position vectors of a point
interior to 8,; or of a point of the boundary of §,, (or of S,),

respectively, relative to 0, {or to 0,). Let fj,f; be position vectors
of a boundary point of §,, S;, relative to 0.

The two expansions
equivalent to Equation (4) are®’:
I . - (13}
[ 3CRIF-F1) = ke TU WL (V) Re B.(F)

| aGlF-B = s T, (B (Gi-TjRe2(,

(14)
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where F=f;+4,. It foilows that the translation properties®’® of Re 128
Those of Re v,

ané ¥, are required to handle these origin shifts.
are 7tiven by: .

Re®, (f+3) = T R.n Gy Rew, (7).

(15)

The matrix R ,(d]) takes care of the translation and it is borrowed from
elsewhere®®; it is given here in terms of another matrix 7 referring to

) a general translation a=(a,n,y), viz

('1)m%_' \E [ [(_1)4'\‘ Z,") mint (a)’pc—oﬁé”\""\' by}

o~ (16)

) § + (‘17 &mn)—nn'm' (2,10 cos(mu-m')‘m] (0=07)
: g g"""")ﬂ""n‘@) = (™ e meo?

.' % ey ConCan [G-i) t,,“\',,,-“l (3.,705{,\(,_,,‘:)'11\)

. % + tlmn,-—lm.'m. €N 52“"’("“"“')7})1 (U* U-') ’

l where 1 is given by:

. . n+n!

: Temmar (300) = | L (l—l)"""‘"'"“*"z(zk+1)jk(ka)P:""(cosm*

' ={n-n'

i J(znu)(2n=+1)[k-(m-m')]f (n n k> (n n' k

: * . . ’ (17)

‘ {k+(m-m*') 3! 00 O n -n -(m—m'))

31 32 3 . . . : 1
and( ) is the Wigner 3-j symbol defined‘'? as follows:

my ®p Wy
()l pil h)-(-”".n--.
m; me my
x((h‘f‘h'n)'(la—h'*'ll)'(—Jl+h+h)'(7!4"":)'(h—M-)’(]:‘f"x)'(]:‘“1)‘():*""))‘(11-"a)')“ {18)
(ntptnt)

(=P A
+ra=k) (=1t mt 8= —rat i)

}:' Bt g 13 =2)p=my = 1)'(3y
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The particular Wigner 3-j symbol (0" ;” :), vanishes if J = n+n'+k is

odd. If J = even then

n n‘k . (19)
( >= (~1)¥2 J(J-Zn)!(J-Zn')!(J—ZR)l (J/72) !
000

(J+1)! ) (¥3-n) ! (¥I-n')! (¥I~k)!

The form of the matrix R(4) given in (16) - (19) is quite general since
it refers to a general translation 4%(a,%.%¥). For the particular
case®® ¢f a translation "d" along the z-axis, it reduces to

jntami p ny
men+(nent ¢ 2. &
= Z (-i) (2k+ i)(i i) *
f=inlat

REY

Tmn, ot m'm!
i m>0

x ék(w)”(ﬁ‘ﬂf)@’n'*.ﬁ g 8‘ o‘l>/m. m k) BW. S,,mn 41 m=0,0ze

m - O O m:=0, Tmo

which still contains the 3-j Wigner symbols defined above. We still
require the translation properties of ¢,, which is of the form

QI @S] Do (Bdnre (5, @

where the matrix o, takes care of the translation of origins. It turns
out that o, is exactly the same as the matrix R, except that the Bessel
function j, (ka) appearing in Equation (17) is now to be replaced by the
Hankel function h, Y(ka). With that single change, Equations (16)-(20),
remain as before also for o, (~&,+&,).

If Equations (7), (13), (14), (15), and (21) are substituted into
Equation (1), the result is an expression in which the coefficients of
Re¥(f;) can be set equal, and this yields:

RE(4,) d=ip*a*+ f0 (-&,+&,) Rep?a?, (22)
where f=I1+4; and the Q' (i=1,2) are given by Equations (10) and (11)

depending on the type of B.C. used, and the integration is over S,. The
same procedure for I=I;*d; in S, yields the analogous result,

FOTE: Llet J, and J, be two angular momenta vectors of magnitude 2, andz,.
The cun of these momenta is: J = J, = J;, of magnitude 3. If

oy, /3y (With pam+m) are the cigenvalues of two suitable eigenfunctions
X(2:m)., X(3,m) respectively associated with the J;,J,, then the
eigenfunction of J, in terms of those of J, and J, is:

XOm = Y CU0,2,00 meym) X(5,m) X(g,m)

The coetficients a:e ﬁthe Clebsh-Gordan coefficients which are
proportional to the Wigrer 3-j symbols. If J, and J, were rot coupled,
each precessing indcpendently about J, then the eigenfunction of J in
terms of those of J, and J, would be: X{j,m)X(3,m).
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R(&Ya=1 Q*a? + i0(i&, + &) Rep'a’ (23)

ere the of are the expansion coefficients over each §;. If we now
nsider the scattered field expansion in Equaticn (6) together with

Eq‘ gation (13) and use :x-f}ua, (i=1,2), we find,

£::2(&,) Re Q*a*-~iR(&,;) ReD*a?. (24)

solving equations (22) and (23) for «' and o« in terms of & and
-uostitution into equation (24) yields the total T-Matrix for the two
scatterers, 'I',z, which is

T, = S RE)T, [4-0 (54 3T 0 (53, YRT e 2
(R IXY

‘t*k« * [L-}- O'L-a‘ +3k)'Tk R/a"’ak)] Ré‘a;) s

.7 terms of the translation matxix R in equatxons (16) -~ (19), where o
'z obtained from R by replacing j, by h ’, and in terms of the T~
vatrices of the individual scatterers. “For two identical spherical

-catterers separated a distance 2d = 2d 2, along the z-axis, the two T-
natrices are the same and the result simplifies to:

Tt (-d) 5, (DD . [&=-d &=+4d.] (26)
~here
" (d=R(d) T{1-5(-2d) To (2d) 71 [1+0 (-2d) TR(2D I R(-T) . (27)
The sinplest expression for this result is:
T.,=R(d) [TDMIR(-d) +R(-d) [TD.M,)R(+d)},

(28)
where
Di=[1-9(=2d) To (:2d) 7]} (29)
Mz={1+0(32d) TR(x2d) ], (30)

where R is as given in (20), and o is just like it with the j_ replaced
by h >, The Wigner 3~j symbols are as defined in equatlons (18) and
(19)7 It should be remarked that both R and ¢ are orthogonal, viz.,
RYU&=R(-8) and o =0(-a), (31)
and that the following additior theorem holds:

C(dR) = o(RR(& = R(De(R (a<R) . (32)
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For an glastic object in a fluid,¢'®, the (single-scatterer) T-matrix is
not the one given by equation (9) and either (10) or (11), but rather by

T=-Re[QR™P] [QRIP)* , (33)

where the matrix § = QR’!P new plays the role of the old matrix Q in the

acoustic case. The matrices P, R( % required here to construct §, and
ultimately T are given elsewhere.!®' For the case of an elastic shell
in a fluid, the pertinent T matrix is

== (Qpe * ST IMME [(Qon+ QuoTe) 2] (34)

where M = R, + RT, + i T,, and the various auxiliary matrices contained
. . % . . : (17,18)

in this expression neederl to construct T have been given elsewhere .
Various other T-matrices have been constructed for elastic inclusions in
elastic media, ™ multilayered scatterers,‘®?" and others.?®® They can
all be used in conjunction with the two-scatterer fcrmulation given
above.

IXI. AN ELASTIC STRUCTURE NEAR THE BEA SBURFACE

We consider an elastic sphere (WC) and an elastic spherical shell
near the sea surtace being insonified from below by a plane c.w.
acoustic wave. We use the method of images and assume the sphere is a
distance d below the sea surface, and its virtual image is a distance d
above it. We can use the methodology described above for two
scatterers. This methodology will make use of the T-Matrix in equation
(33) for the elastic sphere, and in equation (34) for the elastic shell.
The spherical geometry is used for simplicity since the T-Matrix method
could handle almost any arbitrary shell/solid shape. The method of
images takes care of the type of boundary one has in between the sphere
and its image. 1If the boundary is rigid - a good first approximation
for a flat ocean hottom - the Green‘s functions of the object and its
image are added, which is reflected in the sum of the two terms for the
Ty, -~ matrix in equation (26). If the boundary is soft (i.e., Dirichlet
B.C.), then we should take the difference of the two terms in equation
(26). We will show calculations below for both these cases, although
the most important one, and the one depicted in Figure 1, is the one in
vhich the intermediate boundary is a pressure release surface, such as
that of the sea.

A1l our frequency-domain calculations will produce moduli of form
functions |fe] (c.f., equation (12)). These will yield backscatterin
cross sections after sqaring. Al} .our time domain (v = ct/a
calculations are obtained by means of'¢-%);

P, (v) = & [F.(x,m) 6l €17 dx, (35)
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~here G(x) is the spectrum (i.e., the Fourier transform) of whatever
.ncident pulse is used.”® In the case of very brnad incident spectra,
say, G(x)+= 1, the time response approximates the inverse Fourier
«ransform of f_(x), which is the "impulse response" of the scatterer,
wnich we plct below.

III. NUMERICAL RESULTS

Numerous calculations of form-functions of spherical shells in
Lrhounded media have been found by us in earlier work.’ We are here
concerned with a WC solid sphere and a thin spherical aluminum shell,
rear the boundary shown in Figure 1. TJTf the separating boundary is
rigid we add the two terms in equation (26) as discussed above. If it
i1s pressure-release, we will subtract those two terms. Figure 2 shows
the form~function of an elastic (WC) sphere in water in the band:
2_ka<10, at various distances from a bounding rigid interface measured
vy the quantity R which is proportional to the distance to the boundary.
Tnere are two observable resonance Zeatures near 7 and 9 superimposed on
srooth rigid (RST) background, as one would expect of a WC-sphere.
These features are associated with the Rayleigh (R) and the first of the
whispering Gallery (WG) modes. As the sphere approaches the boundary
{i.e., R=4, center; and R=2, bottom) the resonance peaks remain
essertially at the same places, but they become broader and harder to
distinguish from the level of a rising background. Thus, proximity to
3 rigid boundary tends to wash-out the resonances. Figure 3 is the sanre
as Figure 2 hut now the boundary is a soft, or pressure release,
surface. As the WC sphere approaches the soft boundary (R=4, center:;
?=2, bottom) th2 pattern becomes considerably more distorted than in
Figure 2 for the rigid boundary. The dips seen in the top plot at 7 and
2 now become peaks barely rising above the newly distorted backgrounds.
The background gains in internal structure with proximity to the soft
interface, but the rescnances are alsc washed out, even more than when
the interface was rigid. Figure 4 shows the late-time response (i.=.,
S50<t=ct/a<200) as the WC sphere approaches a pressure-release boundary.
These time domain calculations are performed by means of equation (33)
and the corresponding form-function. As the sphere gets closer to the
soft boundary (viz., center, R=4; bottom, R=2), the wave-packet
structare of the response fades away, although a strong feature at 1170
seems to remain always present. The amplitude of the displayed
oscillations are about 10 times weaker than if the boundary had been
rigid -- although we do not show that case here. Again, proximity to the
boundary, particularly a soft one, washes out the significant features
in the tine-response, even when the boundary is an ideal, perfectly flat
one, Figures 5 and 6 deal with a thin spherical alumihum shell
(h/a=0.1%) in water, near a soft, or pressure release, boundary. Figure
5 (top) gives the form-functior for the shell in a bcundless medium!'®,
2s one would have found it away from boundaries. This pattern is
recovered in the presence of a pressure-release boundary if the distance
of the shell from the boundary exceeds Re8 (i.e., 8 diameters away). As
the shell approachas the soft boundary (i.e., R=4, center; R=2, bottom)
its form-function becomes appreciably distorted. The resonance features
at 4.2 and 8.3 persist, but the first one splits into two, while che
backgrovnds seem to decrease at high-frequencies. Figure 6 shows the
late-tinmz response (viz., 59<tmct/az200) of the same aluminum spherical
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FIG. 1. The geometry of the object,
its image and the separating FIG. 2. Form function of a solia
boundary. All pertinent vectors (WC) sphere approaching a rigid
re shown. boundary. The sphere is very far
away (R=) on top, and heccmes
closer (R=4, center; R=2, bottcm),
in the lower plots.

shell. The late-time response is doninated by the resonances of the
shell, particularly the ones within the band: 3ska<l0, as shown in
Figure 5. As the shell approaches the pressure-release interface (i.e.,
R=4, center; R=2, bottom} there are substantial changes in the time-
response. The amplitude of some of the later wave-packets increases
with proximity %to the boundary, although, 1in general, the entire
response is weak, and much weaker than in the case of rigid interface.
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§=i (c?nter) and R=2 (closest, the same conditions (r=ct/a).
otton) .

IV. CONCLUSIONS

The resonance features present in the form-functions or
backscattering cross-sections (BSCS) of submerged elastic objects change
as these objects get close to environmental beundaries. In general, the
cross~sections and the temporal responses of elastic solid bodies and
elastic shells become distorted near boundaries, and take on values
quite different from their values in free-space ox deep waters. The
present study quantitatively describes those differences and graphically
displays specific distortions for a given metal sphere and a specific
thin spherical shell at various distances from an idealizad model of the
sea surface (or bottom). The approach used was the nethcd of images
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counterpart of Fig. 3. shell counterpart of Fig. 4.

coubined with a two~body scattering formulation that determined the T-
natrix of two objects issonified by acoustic waves when the T-matrix of
each iadivI iual cbject was either known or calculable. In our numerical
results we noticed the splitting of certain resonances ("bifurcations"?)
into twoc cumponen*s as the structure approached the boundary. In
general, proxinity to the sea surface tends to wash-out or smoocth-out
the oscillatery nature oF the BSCS. That oscillatory nature is due to
resonances cf the object and is essential for targat-recognition
purposes. In the time-domain, the bcundary influence seems to be
confined to a "skin-layer," bounded by Rs4. The free-space form-
functions (i.e., Tigures 2,3, and 5 (tops)) in the absence of boundaries
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are recovered from the present general formulation when the objects are
atout 4-& diameters away from the interface. Finally, and obviously,
these distorting efforts in the BSCSs will make any target-recognition
scheme substantially less effective for scatterers that remain
yndefinitely near environmental boundaries. Fortunately, the previous
target-ID capabilities will ke recovered at a few characteristic
distances (i.e., diameters) away from those interfaces.
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